1,049 research outputs found

    Finite Size Scaling, Fisher Zeroes and N=4 Super Yang-Mills

    Full text link
    We investigate critical slowing down in the local updating continuous-time Quantum Monte Carlo method by relating the finite size scaling of Fisher Zeroes to the dynamically generated gap, through the scaling of their respective critical exponents. As we comment, the nonlinear sigma model representation derived through the hamiltonian of our lattice spin model can also be used to give a effective treatment of planar anomalous dimensions in N=4 SYM. We present scaling arguments from our FSS analysis to discuss quantum corrections and recent 2-loop results, and further comment on the prospects of extending this approach for calculating higher twist parton distributions.Comment: Lattice 2004(spin), Fermilab, June 21-26, 2004; 3 pages, 4 figure

    An efficient compressive sensing based PS-DInSAR method for surface deformation estimation

    Get PDF
    Permanent scatterers differential interferometric synthetic aperture radar (PS-DInSAR) is a technique for detecting surface micro-deformation, with an accuracy at the centimeter to millimeter level. However, its performance is limited by the number of SAR images available (normally more than 20 are needed). Compressive Sensing (CS) has been proven to be an effective signal recovery method with only a very limited number of measurements. Applying CS to PS-DInSAR, a novel CS-PS-DInSAR method is proposed to estimate the deformation with fewer SAR images. By analyzing the PS-DInSAR process in detail, first the sparsity representation of deformation velocity difference is obtained; then, the mathematical model of CS-PS-DInSAR is derived and the restricted isometry property (RIP) of the measurement matrix is discussed to validate the proposed CS-PS-DInSAR in theory. The implementation of CS-PS-DInSAR is achieved by employing basis pursuit algorithms to estimate the deformation velocity. With the proposed method, DInSAR deformation estimation can be achieved by a much smaller number of SAR images, as demonstrated by simulation result

    Non-Markovian dynamics for an open two-level system without rotating wave approximation: Indivisibility versus backflow of information

    Full text link
    By use of the two measures presented recently, the indivisibility and the backflow of information, we study the non-Markovianity of the dynamics for a two-level system interacting with a zero-temperature structured environment without using rotating wave approximation (RWA). In the limit of weak coupling between the system and the reservoir, and by expanding the time-convolutionless (TCL) generator to the forth order with respect to the coupling strength, the time-local non-Markovian master equation for the reduced state of the system is derived. Under the secular approximation, the exact analytic solution is obtained and the sufficient and necessary conditions for the indivisibility and the backflow of information for the system dynamics are presented. In the more general case, we investigate numerically the properties of the two measures for the case of Lorentzian reservoir. Our results show the importance of the counter-rotating terms to the short-time-scale non-Markovian behavior of the system dynamics, further expose the relations between the two measures and their rationality as non-Markovian measures. Finally, the complete positivity of the dynamics of the considered system is discussed

    Quasi-normal modes of warped black holes and warped AdS/CFT correspondence

    Full text link
    We analytically calculate the quasi-normal modes of various perturbations of spacelike stretched and null warped AdS3AdS_3 black holes. From AdS/CFT correspondence, these quasi-normal modes are expected to appear as the poles in momentum space of retarded Green functions of dual operators in CFT at finite temperature. We find that this is indeed the case, after taking into account of the subtle identification of quantum numbers. The subtlety comes from the fact that only after appropriate coordinate transformation the asymptotic geometries of warped black holes are the same as the ones of warped AdS3AdS_3 spacetimes. We show that in general the quasi-normal modes are in good agreement with the prediction of the warped AdS/CFT correspondence, up to a constant factor. As a byproduct, we compute the conformal dimensions of boundary operators dual to the perturbations. Our result gives strong support to the conjectured warped AdS/CFT correspondence.Comment: 26 pages; typos corrected, references added; more clarifications, match the version to appear in JHE

    From crystal to amorphopus: a novel route towards unjamming in soft disk packings

    Full text link
    It is presented a numerical study on the unjamming packing fraction of bi- and polydisperse disk packings, which are generated through compression of a monodisperse crystal. In bidisperse systems, a fraction f_+ = 40% up to 80% of the total number of particles have their radii increased by \Delta R, while the rest has their radii decreased by the same amount. Polydisperse packings are prepared by changing all particle radii according to a uniform distribution in the range [-\Delta R,\Delta R]. The results indicate that the critical packing fraction is never larger than the value for the initial monodisperse crystal, \phi = \pi/12, and that the lowest value achieved is approximately the one for random close packing. These results are seen as a consequence of the interplay between the increase in small-small particle contacts and the local crystalline order provided by the large-large particle contacts.Comment: two columns, 14 pages, 12 figures, accepted for publication in Eur. Phys. J.

    A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source

    Full text link
    We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early phase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 Feb 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature T<20 MK, post-flare loops

    Charged pion form factor between Q^2=0.60 and 2.45 GeV^2. II. Determination of, and results for, the pion form factor

    Get PDF
    The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically below the monopole parameterization that describes the low Q^2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate Q^2 regime.Comment: 18 pages, 11 figure
    corecore